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An effective field theory for collinear and soft gluons: Heavy to light decays
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We construct the Lagrangian for an effective theory of highly energetic quarks with eQeligyeracting
with collinear and soft gluons. This theory has two low energy scales, the transverse momentum of the
collinear particlesp, , and the scale@?/Q. The heavy to light currents are matched onto operators in the
effective theory at one loop and the renormalization group equations for the corresponding Wilson coefficients
are solved. This running is used to sum Sudakov logarithms in incligivesy and B— X v decays. We
also show that the interactions with collinear gluons preserve the relations for the soft part of the form factors
for heavy-to-light decays found by Charlesal.[Phys. Rev. D60, 014001(1999], establishing these relations
in the large energy limit of QCD.
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[. INTRODUCTION cated by the presence of two low energy scales, which must
be properly accounted for. These scales can be clearly seen
The phenomenology of hadrons containing a single heavpy considering the momentum of a collinear quark. If the
quark is greatly simplified by the fact that nonperturbativequark moves along the light-cone directinfi with momen-
hadronic physics can be parametrized by an expansion itum Q~E~m thenp=(p*,p~,p,)~Q(A%,1)), wherex
Aqcp/m, wheremis the mass of the heavy quark. At lowest is a small parameter. Thys ~ QA is the intermediate scale.
order, interactions are insensitive to the heavy quark mas@/ith two low energy scales it is more appropriate to count
and spin, leading to new spin-flavor symmetrjé$ These powers of\ rather than powers of @/ [6]. This is analogous
symmetries relate form factors for decays of one heavy hadto nonrelativistic QCD(NRQCD) for bound states of two
ron to another heavy hadron. In Ref4], [2] heavy quark heavy quarks, where one counts powers of the velocity rather
effective theory(HQET) was constructed as a general frame-than powers of I [7]. Constructing such an effective field
work in which to explore heavy quark physics. The effectivetheory bears some similarity to isolating momentum regimes
theory allows a systematic treatment ofml¢orrections and using the method of region$§] on full theory Feynman dia-
makes the symmetries manifest. Inclusive decays of heavgrams. There are, however, advantages to using an effective
hadrons involving large momentum transfer to the decayield theory approach over the method of regions, namely, it
products can also be treated in HQET with the help of thés straightforward to systematically include power correc-
operator product expansid®PB [3]. At leading order, the tions and it is possible to properly account for operator run-
parton model results are recovered and nonperturbative coning, which sums Sudakov logarithms. In order to consis-
rections are parametrized by matrix elements of higher ditently go beyond leading order it is important to give a
mensional operators, suppressed by powers of 1/ detailed construction of the effective field theory. This was
Decays of heavy hadrons to light hadrons cannot bewot done in Ref[6], and it is one of the main points of this
treated exclusively with HQET unless the four-momentum ofpaper.
the light degrees of freedom are small comparethtéiow- The collinear-soft effective theory can be used to describe
ever, in regions of phase space where the light hadronic désoth inclusive and exclusive heavy-to-light decays. For in-
cay products have large energy-m, a different expansion clusive decays this theory is valid in the regime where the
in powers of 1E can be performed. In Ref4] Dugan and phase space of the decay is restricted such that the final had-
Grinstein used this approach to construct the large energspnic state is forced to have low invariant mass and large
effective theory(LEET), which describes the interaction of energy. This is the case for large electron energy or small
very energetic quarks with soft gluons. However, LEET ishadronic invariant mass in semileptor&— X, v decays,
missing an important degree of freedom, namely, collinearnd for large photon energy Bi— Xsy decays. The Sudakov
gluons, and does not reproduce the IR physics of Q6D  logarithms that appear in the endpoint regions of these de-
In Ref. [6] it was shown that an effective theory including cays can be summed into the coefficient function of opera-
both collinear and soft gluons correctly reproduces the infrators by running in the collinear-soft theory between the scale
red physics of QCD at one loop. This collinear-soft theory isQ and QX, and then running a soft operator fro@\ to
needed between the scleand an intermediate scale, below Q\?. In Ref.[6] Sudakov logarithms at the endpoint of the
which collinear modes can be integrated out. For inclusivephoton energy spectrum in the deddy- Xy were summed
decays it was shown that the collinear-soft theory can bén this manner. Here we sum Sudakov logarithms betw@en
matched at the intermediate scale onto a theory containingndQA for bothB— Xgy andB— Xl v. In the ratio of large
only soft degrees of freedom. moments of these decay rates effects of physics below the
The power counting in the collinear-soft theory is compli- intermediate scale cancel, and we reproduce previous calcu-
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lations carried out using the factorization formali§&y10]. o n#* o L )
It is also possible to apply the collinear-soft effective P“=N-p—+(p)*+n-p— =0 +OM)+ON),
theory to exclusive heavy-to-light decays. The form factors 1)

for such transitions have contributions from the exchange of

soft gluons with spectatorésoft contributiony as well as where we have useal* p~~ p? ~\2 for fluctuations near the
from the exchange of hard gluoitso-called hard contribu- mass shell. The collinear quark can emit either a soft gluon
tions). In this paper we will only consider the soft form fac- or a gluon collinear to the large momentum direction and
tors, even though the two types of contributions are believe@till stay near its mass shell. Collinear and soft gluons have
to be the same order inry, [11-13. In Ref.[12] relations  light-cone momenta that scale like=Q(\? 1)) and kg
among the soft form factors were derived, and it was showr= Q(\?,\%,\?), respectively. For scales above the typical
that only three independent functions are needed to descritfff-shellness of the collinear degrees of freedokf
heavy-to-light decays. However, these relations were ob=(Q\)? both gluon modes are required to correctly repro-
tained within the framework of LEET, which does not in- duce 'aII the infrared p'hysics of the full theory. This was
clude collinear gluons. In this paper we show that the includescribed in6], where it was shown that at a scale-Q
sion of collinear modes does not alter the soft form factor@CD can be matched onto an effective theory that contains
relations to leading order in. Since the collinear-soft effec- "€avy quarks and light collinear quarks, as well as soft and

tive theory reproduces the infrared physics of QCD at Iargé:OIIinear gluons.

energies, this establishes these soft form factor relations in The ngranglan desgnbmg the interaction Of collinear
the large energy limit of QCD quarks with soft and collinear gluons can be obtained at tree

) . . . level by expanding the full theory Lagrangian in powers of
l.n this paper we give a detailed qonstrucUon of the)\. We start from the QCD Lagrangian for massless quarks
collinear-soft effective theory and apply it to general heavy-

. . . and gluons
to-light decays. In Sec. Il the Lagrangian for collinear gluons
and collinear quarks is constructed and the Feynman rules EQCDZ%DIII—% G,,G, 2
are given. The power counting for collinear gluons is formu-
lated in a gauge invariant way. The collinear-soft effectivewhere the covariant derivative B ﬂ=aﬂ—igTaAZ, and
theory does not have the same spin symmetry as LEET, b ,, is the gluon field strength. We begin by removing the
is still invariant under a helicity transformation. In Sec. Il large momenta from the effective theory fields, similar to the
we construct the heavy-to-light currents in the effectiveconstruction of HQET2]. In HQET there are two relevant
theory at lowest order in. At this order the effective theory momentum scales, the mass of the heavy quaakdA ocp.
current couples to an arbitrary number of collinear gluonsThe scalemis separated fromh ocp by writing p=mo +k,
with a universal Wilson coefficient. The one-loop matchingWherev?=1 and the residual momentuki<m. The vari-
for the Wilson coefficients are then derived. In Sec. IV the@blev becomes a label on the effective theory fields. Our
renormalization group evolution of these coefficients arec@se is slightly more complicated because there are three
computed. Finally, in Sec. V we present two applications ofScales to consider. We split the momeptay taking
this effective theory. First we sum Sudakov logarithms in the
ratio of large moments d— Xyy andB— X |'v decay rates. p=p+k, wherep=
Next we show that in the collinear-soft theory, only three
independent soft form factors describe exclusive heavy—to.—l_he “large” parts of the quark momentui p~1 andp
light decays, establishing these form factor relations in theN)\ denoted byp, become a label on the effective théor
large energy limit of QCD. The one-loop matching onto Cur'fielci while the résidual momenturk~\2 is dvnamical y
rents in the effective theory allows us to calculate the pertur:l_his’ is analogous to NRQCD where there are leo threé rel-
bative corrections to these form factor relations in an infrared g by : >
evant scalesn, mg, andmpg~ (and B<1 is theqq bound

fe manner. For the ratio of full theory form factors these ;
f}grd correct:ons ;greerwlith Réﬁ?;] ry for s thes state velocity. In NRQCD the three scales can be separated

[7] by writing P=(m,0)+ p+k wherep~mg and the re-
sidual momentunk~mp2. In this case both the momenta of
Il. THE EFFECTIVE THEORY orderm [i.e., (1,0] and the momentum of ordeng are

labels on the effective theory fields.

Decays of heavy hadrons to highly energetic light hadrons  The Jarge momentg are removed by defining a new field
are most conveniently studied in the rest frame of the heavy, o by

hadron. In this reference frame the light particles move close

to the light-cone directiom* and their dynamics is best de- _ —i5x

scribed in terms of light-cone coordinatps=(p*,p~,p,). w(x)—z e ¥np(X) - )
wherep*=n-p, p~ =n-p. For motion in thez direction we P

take n*=(1,0,0,-1) and n*=(1,0,0,1), son-n=2. For A label p is given to they, , field, with the understanding
large energies the different light cone components are widelyhat only the components p andp, are true labels. Deriva-
separated, withp~~Q being large, whilep, andp™ are tivesd* on the fieldy, o(x) give order\? contributions. For
small. Taking the small parameter to he-p, /p~ we have a particle moving along the* direction, the four component

(n-p)n+p, . ()

N| =
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TABLE I. Power counting for the effective theory fields.

Heavy quark Collinear quark Soft gluon Collinear gluons
Field h, énp A¢ n-Ang n-Ang Ang
Scaling A3 A A2 A0 A2 )y

field ¢, , has two large componenés , and two small com- Here the summation extends over all distinct copies of the
ponentséy ,. These components can be obtained from thefields labeled byp,p’. Note that the gluon field i* in-

field 4, , using projection operators cludes collinear and soft part&*— AL+ AL . The two types
of gluons are distinguished by the length scales over which

£ :'/‘_W(p & =@¢ (5) they fluctuate. Fluctuations of the collinear gluon fielfs

L A IR AL are characterized by the scajé~\2, while fluctuations of

the soft gluon fieldA” are characterized bg>~\*. Since

and satisfy the relations the collinear gluon field has large momentum components
i G=(n-q,q,), derivatives acting on these fields can still give
—&no=énp, NE =0, order \%! contributions. To make this explicit we label the
4 =P P P collinear gluon field by its large momentum componeits
and extract the phase factor containiady redefining the
@g_ =& e =0 6) field Ac(x)—e '9*A, 4(x). Inserting this into Eq(9) one
4 >npo=nee e finds
In terms of these fields the quark part of the Lagrangian in BB ) e )
Eq. (2) becomes L= 2 @P P L n-iD+g@in- Ay o+ (b +iD,
PP’
=3, Gy (in-D) it B (7 p T D) A xpL
= pro(in- ptéps(n-p+in-D)&; +gg-x [ , +i
= np'o npenp’y n,p g An’q)n-p+n~|D+ge_'q'xﬁ~An'q(pi i,
— . — . . "
+§n,p’(pL+|mi)§ﬁp+gﬁp’(pL+|DL)§n,p . (7) +ge*'q'xAﬁ’q) Egn,p. (10

Since the dergvatives on the fermionic fields yield momentayere the covariant derivative is defined to only involve soft
of order k~\<, they are suppressed relative to the Iabelsg|u0ns_

n-p andp, . Without then-D andD, derivatives,&, p is Finally, we expand Eq(10) in powers of\. To simplify
not a dynamical field. Thus, we can eliminagg,, at tree  the power counting we follow the procedits] of moving
level by using the equation of motion all the dependence ok into the interaction terms of the
action to make the kinetic terms of orde?. This is done by
(M- p+-iD)é&mp=(p. + iDL)g_gn,p' (8) assigning a scaling to the_effgctive theory_fields as givenin
Table I. The power counting in Table | gives an order one

S _ _ kinetic term for collinear gluons in an arbitrary gauge. In
This is similar to the approach taken in QCD quantized ongeneralized covariant gauge

the light cone[14] and in QCD in the infinite momentum

frame[15], where two components of the fermion field are ) —i K#K?
constrained auxiliary fields and are thus removed from the f d*x € *(0| TAL(x)AL(0)]0)= F(g’”—av)
theory. Equationg7) and (8) result in a Lagrangian involv- (11)
ing only the two component§, , -

and the scaling of the components on the right- and left-hand

P _ : 1 i i i geWith thi ting all
L= e iP5z |n.iD+(b, +iD,)—— side of this equation agreeWith this power counting a
%, € (P HiD,) p+n-iD interactions scale as" with n=0. Expanding Eq(10) to
- order\? gives
X(pL—i_iDL) Egn,p- (9)

2We have chosen a different counting for the collinear gluon fields
than Ref.[6] (whereAZ~N\). In Feynman gauge there is the free-
INote that Eq.(9) still includes particle/antiparticle and the two dom to choose any scaling witkif A ~\?2 (including the choice as
spin degrees of freedom. However, on the light cone the spinor fom Ref.[6]). The choice in Table | is preferred sinéé' scales the
a spin-up(down) particle is identical to that of the spin-udown) same way as a collinear momentum and there are no interactions
antiparticle. See, for example, R¢L5]. that scale as A/
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FIG. 1. Orden’ Feynman rules: collinear quark propagator with Igbeind residual momentuig and collinear quark interactions with
one soft gluon, one collinear gluon, and two collinear gluons, respectively.

2

_ _ ps \ A _ teraction involving soft gluons. Singe A, ;~n-p, Eq.(12)
L= gn,p n-ib+ ﬁ'—p)ﬁfn,pdl' gn,p+q

gn-Anq includes interactions of a collinear quark with an arbitrary

number of collinear gluons. In Fig. 1 only interactions

b p,+d, . through©(g?) are shown. Note that in the light-cone gauge
+9An,q—f+—,—9 n,q n-A, 4=0 these Feynman rules are the complete set, since

interactions of a collinear quark with three or more collinear

gluons vanish. In this gauge similar Feynman rules for col-

.0 Efn,p+"'+o()\)- linear gluons have been obtained in the framework of light-

cone QCD[17]. However, the Feynman rules in Fig. 1 can

(120 pe used in any gauge.

Summation over the labefs is understood implicitly. The ~_The LEET Lagrangian corresponds to thig ,(#/2)n
ellipsis denotes terms of the same order in the power countD én,p term in Eq.(12) and is mvan:imt ugdzlar a Swg
ing with two or more collinear gluon fields, and arise be-Symmetry [4.12 . W'ﬂg‘ generators S'=(y"X7)/2, S
cause we expanded E€L0) in powers ofgA, to obtain the = (¥ '=9)/2, andS’=X"/2 whereX' are the standard rota-
above expression. This expansion was necessary to move tH@n generators. The collinear soft Lagrangidgy has less
collinear gluon phase factor appearing in the denominator opymmetry than LEET because terms wighy? violate the
Eq. (10) into the numerator. This allowed us to remove thetransformations generated By andS?. However,Lis still
large momenturf from the Lagrangian so that all covariant invariant under aJ(1), namely, the helicity transformations
derivatives were truly of2(\2). The method for including generated by®. SinceS®=y°(1/2—n/4) andhé, ,=0 the
terms of higher order in should be obvious from our deri- helicity transformation also corresponds to the chiral trans-
vation. The first few Feynman rules that follow from th&  formation generated by°/2.
terms inL.¢ are shown in Fig. 1. To complete the construction of the effective theory we
The first term in Eq.(12) gives the propagator for the have to include heavy quarks. This can be done by adding
collinear quarks, which does not change depending othe usual HQET Lagrangian for the heavy quark field
whether it interacts with soft or collinear gluons. This is o
distinct from the situation in the method of regiof8], Lyoger=h,iv-Dh,. (13
where one must determine the propagator on a case by case
basis. The interaction with a soft gluon is obtained from theThe covariant derivative in Eq13) contains only the soft
covariant derivative term in Eq12). Also shown in Fig. 1  gluon field because the heavy quark field does not couple to
are the interactions with one and two collinear gluons. Thecollinear gluong6]. This is discussed in more detail in the
collinear gluon interactions are label changing unlike the in-next section.
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FIG. 2. Ordera \° self-energy diagrams for a collinear quark. st G
rssedees 1

As a simple application of the Feynman rules consider the™
order \° diagrams for the self-energy of a collinear quark  FIG. 3. Matching for the ordex® Feynman rule for the heavy-
shown in Fig. 2. The tadpole diagram vanishes in dimento-light current withn collinear gluons. All permutations of crossed
sional regularization. In the Feynman gauge the remainingluon lines are included on the left.
diagram gives
malism in Eq.(12) will become evident in the next section

. woodd pl+p. b where heavy-to-light currents are discussed.
IEC(p)=QZCF§fW[(n-EW vl
(0T pf—i—lllzjL +2(d-a) pf-{-h.pL I1l. MATCHING THE HEAVY-TO-LIGHT CURRENTS
n-p(p+1)21° n-p(p+1)21° At a scaleu~ Q the weak Hamiltonian has heavy-to-light
(p,+1,)2 p? F-(p+l)] semileptonic or radiative operators of the fof8]
—<d—2>([ﬁ_(p+,)]2+mp]2 CEIEE 6
(14 Herr=——VC" (1) Jhaq I, (18)

Here sums over the labefs | andl, were combined with

the integrals over residual momenta to give the @fll mea-  whereV is the Cabibbo-Kobayashi-Maskaw@KM) factor,
sure(cf., Ref.[7]). The first two terms in Eq14) correspond J is a nonhadronic current, and the Wilson coefficients
to the (u,v)=(+,—) and (—,+) polarizations of the ex- C™'(u) have been run from the scale=myy down tom,.
changed gluon, and the last line to the,1) contribution, In Eqg. (18), the hadronic currents are of the fordg

respectively. Computing the loop integrals one finds =qI'b and we will consider I'={1,y5,7,,7.7s,
0.v,0,,Ysy. We choose this overcomplete basis to simplify
i2,_(p)+ix_.(p) the treatment ob—sy. Below the scalQ~n-p the had-

—€ ronic current can be matched onto currents in the collinear-
) , (15 soft effective theory. This introduces a new set of Wilson

_iaCe W I2(1—e) 2p§( —p?

€ -t
am 2 ( )F(Z_ZE) n-plereu’ coefficientsC;(u). In this section the one-loop matching for
i Co T 21— 2 these new coefficients will be performed atm,, while
s, (p)=—2Fhp e (1-e ((1+ 6)_p_¢ the running will be considered in Sec. IV. We could equally
4w 2 I'(2-2e) n-p well match atu=n-p, but the difference is irrelevant since
_p2\ € we treatn- p~m, and do not attempt to sum logarithms of
—(1—e)n-p) et the form Inf-p/my).

Naively, one might expect that at lowest order the effec-
Here (and in the rest of the papewe use modified minimal tive theory hadronic current ig5f=C(u)&, ,I'h, . How-
subtraction (MS) and therefore  redefined 2  €Vver, since the labei- p~\?, the effective theory Wilson
— u2e”/(4). The sum has precisely the form of the in- coefficient can also be a function of p. Furthermore, an

verse Co||inear quark propagator in F|g 1, arbitral’y number Of f|e|d§ An’q"’)\o can be inClUded W|th'
out additional power suppression. At lowest ordenirthe
asCe A I'(1—e) p2 | —p?\ ¢ most general heavy-to-light current in the effective theory
2(p)= 1. 2(17eal(e MW_L)(GTMZ) therefore has the form

(16) eft - v
. . . . . . ‘]had:CO(n’puM)gn,thv
The ultraviolet divergence in this expression is removed by

on-shell wave function renormalization of the effective +ea(n- p’ﬁ'ql""“)gnyp(gﬁ'A”qu)Fhv
theory fleldgn’p ! + CZ(W' p:ﬁ a1 ,ﬁ- a2 rﬂ)zn,p(gﬁ' An,ql)
. aCe|1 —p? X(gn-Ap g )Th,+++, (19
Zg—l— yp. ;—M(? +1]. (17)

where the ellipsis stands for terms of the same order with
Z, coincides with the renormalization of the quark field in more powers oh-A,, ;. The coefficientg; may also depend
QCD. This is expected6] since without currents or soft on the choice of’. At the scalew=m, thec; can be deter-
effects the collinear quark Lagrangian simply describes QCDnined by the tree level matching calculation depicted in Fig.
in a particular frame. The utility of the two component for- 3. On the left, the gluons with collinear momenta kick the
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P FIG. 4. Order \° Feynman
rule for the effective theory
i B AL heavy-to-light current withr_1 col-
— ,;C(Mﬁ,p)pl; _ (7 _ )“‘(”_ m) linear gluons. The sum is over
m! perms [fi-q1][n-(q1+¢2)] (-7 ¢i] permutations of{1,...m} and
the Wilson coefficient depends
only on the sum of momenta in
the jet,P=p+2",q;.

quark far off-shell, and integrating out these off-shbll P=p-+2q;. In terms of this field the leading order effective

guarks gives the effective theory operator on the right. theory current folQA <u<<m, has the form
To perform the matching, first consider the simpler case
of an Abelian gauge group. In this case calculating the full Jﬁgd: Ci( 7 P)xnel'h, (24)

theory graph withm gluons in Fig. 3, expanding in powers of

\, and putting the result over a common denominator gives . . - —
with a universal coefficien€;(u,n-P). The statement that

1 the coefficient only depends on the total jet momentiis
= (200  nontrivial and is discussed further in Appendix B.

1N For a non-Abelian gauge group a similar gauge invariance
argument applies, however the matching in Fig. 3 is more
complicated. Equatiori24) remains valid, but with a more
complicated definition of the jet field. In momentum space
we find

3

1
Cm(n=my,)= Hi

The factor of Im! is from the presence ofn identical A,
fields at the same poiitThus, we have the tree level result

gn-Ang

‘]ﬁgc],umbzgn,pexr{ ﬁ,q I'h

L (21)

:E 2 (_g)k
It is not immediately clear how this result is modified for Xn,p X perms K!

u<m, since the infinite series of operators in E&9) could — A
. . . n-Ang.:
each run differently. However, gauge invariance relates these > 91
operators, and only the sum of terms in Eg1) is gauge . . . K
invariant. Under a collinear gauge transformatie¢x), the [n-gi]ln-(q.+ %)]"'{n'_z,l Qi}
field h, is invariant since collinear gluons do not couple to o
heavy quarks. On the other hand, the collinear quark field
transforms ag, ,—€'“®¢, ,. Thus, the operataf, ,I'h, is
not gauge invariant. However, it is straightforward to see tha
the operator in Eq(21) is invariant, and this is done in
Appendix A. It is found that

p(gﬁ An,q) p(gﬁ- Ang
exXxp ——|—exp ————
n-q n-q

and the last exponential exactly cancels the transformation of

£, By gauge invariance the current therefore has to be ofvhereP denotes path ordering along the lightlike line collin-
the form in Eq.(21) for an arbitrary scale. It is convenient  ear ton.*

to define a field that transforms as a singlet under a collinear |n the effective theory both heavy and light quarks are

T A

ngy

fn,p’

(29

here the permutation sum is over the indices (1,2 k).

he Feynman rules that follow from Eg4) and(25) are
shown in Fig. 4. In position space the jet field takes the form
of a path-ordered exponential

exgia(x)], (22

Xn(O)zPex;{—igJO dsn AS(sm*) |£,(0), (26)

gauge transformation described by two component spinors, so there are only four
_ heavy-to-light currents at leading ordernWe choose the
» =ex;{ —g_n. An,q) £ (23) linearly independent set[x,ph,], [xnpysh,], and
nP n-q mp [XnpYih,], where y*=y#—n*RI2—1*AI2 has only two

) S ] o nonzero terms. The matching of the heavy to light currents
We will refer to x,p as the jet field since it involves a Grp onto operators in the effective theory is

collinear quark field plus an arbitrary number of collinear
gluons moving in then direction. The relevant label for the Gb— Ca( ) xn oh, ]
jet field is simply the sum of labels of the particles in the jet, q 1AL Xn Pl s

a’}’sbﬁcz(ﬂ)[ympﬁhu]v

3Note that in Ref[6] the Feynman rule with a single collinear
gluon (m=1) has an additionatA./m, term that did not contrib-
ute to the results there. With the power counting in the Table | this “Path-ordered exponentials are also introduced to sum up the cou-
term is suppressed by a power Xaf plings of soft gluons to a collinear jet, see REf9].
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G7,,b—Ca() [ xnpYih,] (56007,

& %
- § 2
H{Ca(p)n, +Cs(w)v ,t xn PNy 1, S Q
Pb S g p
»——) >

EYMYSb—’Ces(M)ifﬁv[Yn,PVIhu]
_ — FIG. 5. Full theory one-loop diagram for matching the heavy-
C n,+C h,], (2 _ . oo :
{CapIn,+ Colm)v }xnpyshol. (27) to-light current(denoted by®). The incoming line is a massive
Tio,,b—Col12)(N,G0n— NG [ X P)’ﬁh ] quark and the outgoing line is massless.
2% mIv vIu , v
+Ciol ) rent x, pI'h, . The calculation is most easily performed in
Xies [xr h,]+ Cyy()(v,n,—v,N,) pure dimensional regularization. The full theory matrix ele-
wrlXnp7sh ]+ Cualw)(o, # ments of the current§I'b between free quark states are

X[xXnphy]+Crd (v, 9 —v,9,0) obtained by evaluating the diagram in Fig. 5 and multiplying
X[ xnpYhhyl, by the wave function and current renormalization factors. In
d=4-2¢ dimensions the on-shell wave function renormal-
Eouyy5b—>—[Cg(M)+Clz(M)](inuév}\—inVéM) ization constants for massive and massless quarks are
X[Yn,PYj\_hv]_l—Cll(M)ietv[Yn,Phu] aCr

3+3| mkz) 4 Z,=1 29
; n? ’ q- - ( )

+Cao( ) (v N, —v,0 ) [ Xn.pYsh,] Zy=1+——

+Cra w)(iv €, —i1v,€,)[XnpYi ], o
g TR RANE ST and the renormalization constants for the scalar, pseudo-
where e;fewpoupn” with €105= — 1. From here on the Scalar, vector, axial vector, tensor, and axial tensor currents

dependence of the Wilson coefficients @nP will be sup- ~ are given by
pressed. The relations in E(7) are valid to all orders in 3asCr

. ; . - Zs=Zp=1— . Zy=2Z,=1,
as and leading order in. At tree level the matching gives ST Are VoA
C1234679104Mp) =1, Csg14mMy)=0. (28) Z=Z: =1+ asCr (30)
5 dme

To match these coefficients at one loop, we calculate perfhe ultraviolet divergences in th&s cancel the ultraviolet
turbative matrix elements in the full and effective theories.divergences in the diagram in Fig. 5, hence all remainirg 1/
All the long distance physics is reproduced in the effectivedivergences are of infrared nature. Thequark and light
theory, and the difference between the two calculations dequark are taken to have momemtaandp, respectively, and
termines the short distance Wilson coefficients. Since thgue defineq=p,—p. Letting ys anticommute ind dimen-
Wilson coefficients are universal the matching can be persjons[the naive dimensional regularizatigNDR) schemé,
formed for the simpler currerd, ,I'h, rather than the cur- the final result for the matrix elements in the full theory is

(QlqlLysiblby=] 1- Z=F| S+ 2+ Y L I —2In(1— ) w
7o 4r | € 2e € € 2 Hg 2 Eg Eg
. 2In(1-§% N
+2IN?(1-§°)— ———>—+2 L|2(q2)+E ul1,ys}u,
aCe| 1 5 my/ 2In(1-§% 1 (w2 5 [u? w?
) — 2 T _ N P24 — = | _ _ A2 -
(qla{1,ys}y*blb)=| 1 i |22t . +2In -~ +2In -~ 2In(1-§%)In i~

7T2

1
+2 I (1-§%) + |n(1—q2)(?—3) +2 Li(§%) + 576 ull,ysty*u

4| (1-8% 2 2| (1-§%
—In(L— — = =ziIh(1l—
P q P q q

aSCF
4

p“ull,ystu

SAn exception is the relation between the coefficientsdiw, b andqio,,ysb that can change depending on how is treated ind
dimensions.
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+asCF{2 2 IN(1—82) + 2 In(1— &) | peT Lye)
—— —In(1— —In(1- ull,yshu,
ar | @ q q Pb Vs
2
aCe|l 1 5 '”(%ﬁ) 2IN(1-8) 1 (p?\ T [u? 2
Hy A — __s _ . N P24 _ = | _ _ A2 -
(glail,ys}io*"blb)y=| 1 i | 25t . +2In -~ +2|n(m§) 2In(1—§ )In(mﬁ)

2
+2 Li(§%) + —+6 ull,ystio*u

1
+21In%(1-§%)+2 |n(1—q2)(?—2

aSCF

4 A2
. ?m(l—q )

WLy Py —p"y*)u, (31

where the hat denotes momenta normalized with respect to ag(m,)Cg Yy _ .
My, S0g=q/my . This full theory result can be expanded in ~ Co(My) =1~ ——7———)2In%(n-P)+2 Li(1—n-P)
\ by noting that

2
a
g°=1-"n-p+O(\?), (32 —2In(n-P) + 1276
and that at lowest order we can expand the full theory a(Me)C
spinors using Eqs27) and (28). _ _  Cyppdmy)=1— ——2"F o |2 P)+ 2 Liy(1—T- P)
For the effective theory in pure dimensional regulariza- 41
tion the final collinear quark is taken on-shell. For momen-
tum labels @-p,p,) this correspongs to choosing this . |4anpP-2 72
quarks residual momentuinsuch thafn-pn-k+p?=0. In +In(n-P) — |+ —<+6/,
this case all graphs in the effective theory are proportional to 1-n-P 12

1/eyy— 1leig=0. The ultraviolet divergences are canceled by

effective theory counterterms, and all infrared divergences Ci2(mp)=0.

cancel in the difference between the full and effective theo- o

ries. Thus, from Eq(31) the Wilson coefficients at the scale For the operatog, ,I'h, there is only one particle in the jet,

m=m, are so in that cas@=p. In NDR the relations amongst Wilson
a (m )C CoeffICIentS Cl Cz, C3:C6, C4:C7, C5:C8, ClO
CiAmy)=1— A Tl In?(n-P)+2 Lix(1-n- P) =Cy;, and C4,=0 hold true to all orders in perturbation
' 4 theory for a massless light quark. This is because the trans-
. 5 formation,q— ysq is a symmetry of massless QCD and the
~ 2In(n-P) L U(1) helicity symmetry of Eq.(12) allows x, p— ¥sxnp
1-mp 12|’ and these transformations relate currents with and without
(me)C Vs-
as\Mp)LE — A . — A
Cagdmy)=1—————12I%(N-P)+2Liy(1-n-P
M) 4m | (NP2 bzl ) IV. RENORMALIZATION GROUP EVOLUTION
3n-P-2| 2 In this section we calculate the running of the Wilson
+In(n-P) 1-7.P + 12 +6 coefficients in the effective theory. The coefficients mix into
themselves and satisfy a renormalization group equation of
as(My)Ce 2 B e the form
CyAmy)=1- B 2In°(n-P)+2Liy(1—n-P)
d
45 A T C(u)=y(u)C(u). (34)
_ . |2—4nP+(n-P)? npP Hogy - VIR
—In(n-P) = + _A+E+6 ,
(1-n-P)? 1-n-P The fact that Eq(34) is homogeneous reproduces the expo-
nentiation of Sudakov logarithms. In this case it is natural to
m.)C 2 o1 P In(A- P solve the renormalization group equations for the quantity
Csg(mp) = as(My) Cr —+ (A ) , In C(w). The leading and subleading series of logarithms are
4 (1-n-P) (1-n-P)? determined by the coefficients summarized in Table II. From

(33 the table one can see that for coefficients with tree level

114020-8
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TABLE Il. Coefficients in the effective theory loop graphs that Crag(u)C(u)[2 2
we anticipate are needed to predict the series of Sudakov logarithmd=ig. 6(c)=i gn pl'hy 2 —+ =
in In C(w). m € €
2 2 2 2
e M of M z
Series in INC(w) One loop  Two loops  Three loops + —In(T) +In (2—) +2 In(T +4
€ \—pL—! —Pi— —pi—tle
LL al In"*1 1/€? — —
2
NLL agln 1/e 1/e? — ™
NNLL alIn"™?  matching 1¢ 1/e? 6|
i p? ag(w)Cell u?
matching, the one-loop matching in Sec. Il is not needed F19- 8d)=% D 4w 2 T1+In i€ |

until the next-to-next-to-leading logarithm{&INLL ) order.
In Sec. Il it was shown that the coefficient of the effec- Figs. Ge), 6(f)=0. (36)
tive theory currenty,pl’h, is the same as the current

én,pI'h, , S0 only the renormalization of the simplgy ,I'h, ~ The graph in Fig. @&l) was calculated explicitly in Sec. II.
current needs to be considered. At one loop the effective From Eq.(35) we see that the logarithms in diagrams with
theory diagrams are shown in Fig. 6. To distinguish UV andcollinear gluons are small at a scale- \/p{~QA\. For the

IR divergences we choose the collinear quark momergum graphs with soft gluons the logarithms are small at a differ-
=P+ k with labelp=(n-p,0,p,) and zero residual momen- ent scale,u~pf/(ﬁ- p)~Q\2. Running the collinear-soft
tum k=0. In this casep2=pf¢0 and this off-shellness theory fromu=Q to w=Q\ therefore sums all logarithms
regulates IR divergences in the diagrams. We will use th@riginating from collinear effects and part of the logarithms

Feynman gauge. The soft diagrams in Fig. 6 give from soft exchange. A= QA collinear gluons may be in-
tegrated out and one matches onto a theory containing only
soft degrees of freedom. The running in this soft theory in-

_ Cradmw)C(p)|[ 1 cludes the remaining logarithms from soft exchange, which
Fig. 6(a)=i§n,pI‘hv4— - would need to be taken into account to sum all Sudakov
& € logarithms.
2 un-p To run betweerQ and QN we add up the ultraviolet di-
——Inl —— vergences in the soft and collinear diagrams in E8S) and
€ T (36). This gives the counterterm in the effective theory
un-p 37
~21n? —2—.)——, afw)Ce[1 2 [ p) 5
PL—te Zi=1+ 4o 62+€|n npl " 2e) 37)
For b—sy, n-P=m, and Eq.(37) agrees with Ref[6].
as(pn)Ce| 2

Fig. 6b)=iv-k ype

&I
")
09995

Since u>Q\ the counterterm can depend on the labeP
€ ~Q, but does not depend da, ~Q\. Z; could also have
been calculated directly from the matching result in &4).
—4 In( K : ) (35) Since the effective theory reproduces all the infrared diver-
—2v-k—ie/ [ gences in the full theory, the effective theory UV diver-
gences are simply the negative of the full theory IR diver-
gences when pure dimensional regularization is used. This
wherek is a residual momentum in the heavy quark wavealternative approach also gives EQY)
function diagram. The ordex? soft wave function renormal- In the effective theory the currerg“-;] I'h, factors out of
ization of the collinear quark is not shown since in Feynmarthe diagrams in Fig. 6 so it is obvious trans independent
gauge it is proportional tm?=0. Evaluating the diagrams of the spin structure of the current. Thus, all the coefficients
with a collinear gluon in Fig. 6 gives satisfy the same renormalization group equati@GE)
a) 500 c) e d B
& g&ﬁg% MMCi(M)—Y(M)Ci(M)- (38)
The LO anomalous dimension is determined by thed)fe
b) 7 9 f term in Eq.(37) (whose coefficient is determined by thez4/
1= 3 _,@_,_ »_@L_ term). The next-to-leading ordefNLO) anomalous dimen-
sion has a contribution from theelterms in Eq(37), as well
FIG. 6. Order)\? effective theory diagrams for the heavy-to- as a contribution from the Ipf)/e term in the two loopZ;,
light current at one loop. counterterm,
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as(w)Ce [
nom o NFp)
5a(1)Cr
YNLOT T T

(39

as(u) ( M)
T NP/

—2CFBWIn

We have introduced the notatidhfor the two loop coeffi-

PHYSICAL REVIEW D63 114020

suppressed by an extia(m) relative to the result in Eq.

(41). Also it is clear that to systematically sum the next-to-

leading log series the two loop coefficidtis required.
Combining Egs(41) and (43) the final result at a scale

u~QN is

fo(2)

ag(mp)

Ci(ﬂ):Ci(mb)eXF{ +f1(2)} (44)

Fori={1,2,3,4,6,7,9,10,11the matching starts at tree level

cient that has not yet been computed with the effectiveand from Table Il we see that for the LL and NLL solutions

theory. From the results in R€] we are led to expect that
B=CA(67/18— 7%/6)—5n/9.

Since we wish to run down fromm=m, andn- P~m, it
is convenient to introduce the scaig, into the anomalous
dimensions. Writing Ing/n-p)=In(x/m,)—In(n-P) and not-
ing that the second logarithm is not large, E89) can be
written as

as(w)Cr | p
nom = i, )
s(u)Cg|5 .
yNLo:—%WF[E—ZIn(nP)
ab(w) [ w
—ZCFB(ZT)ZH'\(m—b). (40)

Using the one-loop running faz,(«) the LO solution of the
RGE is

1

——1+Inz
z

Ci(u)

In Ci(my)

(41)

_ fo(2) o 47Cg [
—as(mb)_ ﬁ(%as(mb)

where B8o=11/3C,—2/3n; and

as(p) 2
Cag(my,) 27+ Boas(My)In(u/my)

(42

Equation (41) sums the LL series of Sudakov logarithms
betweenQ andQA\. At NLL order we include theyy o term

in the anomalous dimension and the two-loop running of

ag(u) in y o and find the following correction to E¢41):

C; ~
|n[ W g zwh)
Ci(mp) || o
_ CFBl 1 2
__,3_8 1—z+zlnz—iln Z
+CF{ 2In(m-P) I
—|==2In(n- nz
Bol2
2CB
———>—[z—1-Inz]. (43
0

Here 61=34C,2_\/3— 10CANn{/3—2Cgn;, andz is still given
by Eq. (42). It is easy to see that the result in E43) is

the valueC;(m,)=1 should be used in Eq44). The coef-
ficientsCs g 1{my) are zero at tree level, and inserting their
one-loop matching values from E@3) into Eq. (44) gives
their LL and NLL series of logarithms.

V. APPLICATIONS
A. Inclusive decays

It is well known that the OPE for heavy-to-light decays
converges only for sufficiently inclusive variables. If the
available phase space is restricted such that only a few reso-
nances contribute to the decay the assumption of local dual-
ity no longer holds and the OPE fails. If, however, phase
space is restricted such that highly energetic jets with small
invariant mass dominate the decay, only a subset of terms in
the OPE are enhanced. It is possible to resum this subset of
terms into a universal structure functig@Q]. In the same
region of phase space, large Sudakov logarithms spoil the
perturbative expansion and thus have to be summed as well.
This summation was carried out for the endpoint of the lep-
tonic energy spectrum in inclusig@— X,|'v decays and the
endpoint of the photonic energy spectrum in inclusBe
— Xy decayd9,21] using perturbative factorizatidr.9]. In
a subsequent workl0] endpoint logarithms in the hadronic
mass spectrum d8— X | v decays were summed within the
same approach. Ip6] it was shown that the result fdB
— Xg7y can be reproduced using the effective field theory.

In this section we considd— X,y andB— X |'v decays
at the endpoint of the photonic energy and hadronic invariant
mass spectrum, respectively. We define kinematic variables

2
Pu 2v-py
So=—, h= , 45
0 mb my ( )

for B—X,l'v decays whereg,, is the momentum of the
quark. ForB— X,y decays we define

(46)

where q is the photon momentum. The endpoint regions
mentioned above correspond to—X~sy/h~Agcp/my,.
Thus, the invariant mass of the light jet is of the order
VMyAgep, and the power counting parameter satisfiés
~Aqcp/my . At tree level, integrating out collinear modes
by performing an OPE in the collinear-soft theory and
matching onto soft operators gives
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df dr NLL order we therefore only need tree level matching onto
d_SEWd_S:<B|O(X)|B> the operatorO(N,m,//N). Since betweernn=m, and u
x T X =m,/N all coefficientsC;(u,n-p) have a universal run-

ning, the result can be written in terms of a single coefficient
C(u,n-p), whereC(m,,n-p)=1 and runs according to Eq.
(44).

(47 The running ofC(u,n- p) does not reproduce the full set

] of Sudakov logarithms because at=m;/+/N there are ad-

where z=1-s,/h. Here we defined the tree level decay gjtional large logarithms in the matrix element@N, ). It

d’r, 1 dr,
dzdh 1 dzdh

=2h2(3—2h)(B|O(2)[B),

rates in the parton model has been shown that these additional logarithms arise from
G2 purely soft gluons and can be summed by running frem
rO=F |y, J2mS, =m, /N to u=m,/N [6]. However, taking the ratio of the
4 192x decay rates in Eq50) these matrix elements cancel,
2
IO= 2 ViVl aed C'1Pm;, (48) . )
m 1 dI'y(N) C(o,mph)
full . - —— ——=2h%(3-2h)| ——— (53
where C7" is the Wilson coefficient of the weak operator L«(N) dh (o,mp)
mediating theb—s radiative transitior] 18] and we neglect
contributions from operators other th&@{"'. The operator
appearing in Eq(47) is defined a$20] Thus, all the Sudakov logarithms in the ratio of rates are
. calculable from the running of the Wilson coefficients in the
O(y)=h,é(iD.+1-y)h,, (490 collinear-soft theory. Using Ed44) this leads to
where the covariant derivativé+=D+/mb includes only
soft gluons. The matrix element of this operator between 1 df (N) ac
B-meson states is the light-cone structure function ofBhe  _— Y :2h2(3—2h)ex;{ — —Fln(h)ln(z)l,
meson. At higher orders in perturbation theory the differen- fS(N) dh 0

tial decay rates can be expressed as convolutions of short (54)
distance coefficients with the operato(y). Defining mo-
ments of the decay rates

where z(u) = ay(pn)/ag(m,) is evaluated atu=m,/N.

dly(N) 1 fldz -1 d’r, This result agrees with Ref10].
dh 1 Jo dzdh’
- 1 (1 . drg B. Exclusive decays
['s(N)= @fo X, (50 As another application of the results obtained in Secs. I

and lll, we investigate exclusive heavy-to-light decays. The
undoes the convolution and makes comparison to existingonperturbative physics of such decays is given in terms of
results in the literature straightforward. Let,~Q\ be the ~ form factors. ForB decays to pseudoscalar and vector me-
scale where collinear modes are integrated out. At this scalgons, they are conventionally defined as
the moments of the decay rates are E—

(P(P)[qy*b[B(py))

dfu(N) 2 2 2 2

—on2(a_ 2 : mz—m mz—m
gn— 2h°(3=2h)Cko,hmy) (O(N; o)), =f.(9%)| ph+p*— Bq2 Zq#| +fo(a?) Bq2 “ g,
T'§(N)=C(0,Mp)(O(N; o)), (51

where the operato®(N; i) is defined as (P(p)[qic*"q,b[B(py))

) LS AP NI S
O(N;Mo)ZJ dy YW LO(y; o). (52 = mB+mP[q (pp +P*) —(mg—mp)g”],
0

Various coefficientsC;(u,n-p) can contribute to the decay .
rates in Eq.(51). However, at NLL order we only need the (V(p,e*)|qy*b|B(py))
tree level matching gt =my in Eq. (28). Furthermore, at the

scaleuo=m,/\N large logarithms are not introduced when
matching onto the operatdd(N,uq) [6]. At this scale to mg+my

2V(g?
— (q ) i6_,11«1470'6_;!:(pb)ppa_7
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(V(p,E*)Wy“yg,blg(pb)) order in 1E (where E is the energy of the light mespn

o matrix elements of all hadronic currents in LEET are deter-

q mined by only three independent functions. Unfortunatel
- u 2 y only p Ys
=2mvAo(q°) '+ (Mg + myv)AL(Q9) LEET is not sufficient to describe heavy-to-light decays be-
N N cause it omits interactions with collinear gluons.
| exn_ 'qq# AP €9 However, as pointed out in Sec. Il the spinors in the ef-
2 Mg+ my fective theory, describing highly energetic quarks interacting
with both soft and collinear gluons, still have two compo-
w_ m mV u nents. In Eq(27) we see that there are only four independent
X|ph+p —2—q : ; ; :
q heavy-to-light currents in the collinear soft effective theory.
For decays to pseudoscalar mesons fkandK, the matrix
(V(p,e*)[qi U“qub|§(pb)> elements of these currents are
=—2T1(q%)ie""”7 €} (Pp) P » (Pulxnphy[H,)=2EL(E),
— — EVIROY -
(V(p, ) [Ty, b|B(py)) (PalXnpy"e[Hu) =0,
=To(q?)[(MG—md) e*#~ (e* - a)(ph+p*)] (PalXnpyth,|H,)=0, (57
2 .
while for decays to vector mesons suchpandK* they are
TTa(0*) (- Q)| 0~ 7 (pF+p*) |, (55)
B \Y

<Vn|Yn,th|Hv>:0'
whereq=p,—p. For decays in which the final light meson

v 5 —
has large energy, we can use the effective theory to gain (Valxn,p7hy[Hy) = —2my g (E)v- €*,
additional information on these form factors. Using E2j0) v
the matrix elements in the full theory are given by matrix (Valxnp¥i'h,[H,)=2EZ, (E)ieley (58)

elements in the effective theory, ) . L
whereel'”=€*"""v ,n_. and we are using relativistic normal-

ization for all effective theory states. Thus, there are still

(M[ATb|B)— > Ci(u){Mpplxnplin|H,) . +AFr. only three linearly independent soft form factors in the com-
' (56) plete effective theory. Together with E(R7) these matrix

elements determine that at tree level the heavy-to-light form

HereM = P,V corresponds to the light pseudoscalar and vecfactors are

tor meson states in the full theory, aMy, p andH,, are the 5 . 5

states of the light and the heavy mesons in the effective f+(a2)=L(E), fo(d®)=2EL(E), f1(q®)={(E),

theory, respectively. The first term in E(6) is the soft

contribution, while the second term indicates the so-called A1(q?)=2E¢, (E), Ax(q®)=¢ (E), V(9®)={.(E),

hard contributiong22,13. For the soft form factor the off- (59)

shellness of the light quarp =2Ek, wherek; ~Aqcp, TU9?) =, (E), Txq®)=2E{, (E), Ts(qd)=¢, (E),

thus A2 ~AQCD/m,O just as for the inclusive decays. The

AFy term in Eq.(56) involves interactions where a collinear Aq(q?)=¢,(E).

gluon is exchanged with the spectator in Bimeson. In Ref.

[13] it was argued that these spectator effects are the sani@ deriving these relations we have dropped terms sup-

order in\ and 1m, as the soft contributions, but can be pressed bynp \,/E since these corrections are just as large as

regarded as being suppressed by a power6f/m,A ocD)- \-suppressed power corrections that are not included. Thus,

They are therefore just as or more important than the oneﬁu(E) only appears in the purely longitudinal form factor

loop corrections to the matching coefficieg ) given in  Ao(d?). Taking this into account our results are in agreement

Eq. (33). Here we will apply the effective theory to the soft With Ref.[12].

contributions and leave the hard spectator contributions for From the results in Sec. Ill we can obtain some more

future investigation. information on the heavy-to-light form factors. The results of
In Ref.[12], Charleset al. showed that in heavy-to-light Eds.(27) and(33) determine the perturbative corrections to

decays, in which both the heavy and light quark interactEd. (59). Hard corrections do not break the symmetry rela-

solely via soft gluons, there are only three independent mations between effective theory matrix elements, but do

trix elements. Charlest al. derived their result by combin- change the relation between form factors in the full and ef-

ing HQET with LEET and using the fact that the HQET fective theories. We find

spinors describing heavy quarks and the LEET spinors

describing highly energetic quarks interacting with soft glu- f,(q%)=Z{(E)[C4+ECs],
ons, &,, have only two independent components. Using the R R
relationséh,=h, and hé,=0 they showed that at leading fo(q%)=¢(E)2E[C4+Cs(1—E)],
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f1(9%)=¢(E)Cy, e{cguwso) my [ 2Cg(my)
) cll | sy | Cy(my)
A1(0%)=¢, (E)2ECs, !
My as(M,)Cr
AZ(qZ):gL(E)031 =—2mBS— 1+—4W
(60) °
V(9%)=¢.(E)Cs,
X In(2E) —1, (62)
T1(9®)=¢,(E)Cy, 1-2E
T,(02)=¢, (E)2EC,, where the perturbative correction from the soft form factor is
2Aq7)=¢.(B) o in agreement with Refl13]. There are additional ordetg
o corrections to Eq(62) from collinear gluon exchange with
T3(09) =4 (B)C, the spectator i, which can be found in Ref13]. Although
. Sudakov logarithms do not affect the ratio of purely soft
Ao(g?)=¢(E)[C4+Cs5(1—E)], form factors, they may suppress the soft contribution relative

to that from collinear gluon exchange.

where C;=C;(E) and we have used the helicity relations

given below Eq(33). In Ref.[23] it was pointed out that the VI. CONCLUSIONS

ratios V/A; and T,/T, do not receive perturbative correc- ) ) ) ) . .

tions due to the fact that interactions that flip the helicity of N this paper we investigated in detail the collinear-soft
the energetic quark are suppressed I, HFrom Eq.(60) we ef_fect|ve t_heory, which describes highly energetic pgmclgs
see that, in fact, at leading ordenirthe soft contributions to  With low invariant mass. The degrees of freedom in this

the form factors{A;,A,,V} and{T,,T,, T4} are related to theqry consist of cgllinear quarks and gluons' with momenta
all orders ina.. Furthermore, since the RGE's for all cur- SCaling askc=Q()\2 '12’)‘)’2 and soft gluons with momenta
rents are identical, any ratio of soft form factors are indepen-scaIIng asks:Q()\ ATAT. We gave a d_etalled de”V‘?“O”.
dent of Sudakov logarithms. of the collinear-soft Lagrangian W|th the intent of mglgmg it

At one loop the hard corrections to ratios of the form Straightforward to go to subleading ordershnin addition
factors in Eq.(55) were previously calculated in RefL3]. we d%rlved the effective theory hgavy-to-hght current. at or-
Since the authors used LEET as their effective theory theifl€f } - For decays of heavy particles there are regions of
matching calculation was not infrared safe and the overalPh@se space where this theory applies, namely, when the
normalization of the low energy matrix elements was un-12dronic decay products are light and are produced with
known. However, it was noted that this problem cancels oufd"9€ €nergy. The currents mediating these decays are given
of the ratios of form factors because the infrared divergence®y four linearly independent operators in the effective
in the full theory are universal. Our results in E§0) do not theory. We performed the matching onto thesg operators at
suffer from this problem because the collinear-soft effectivel’® On€-1oop level and calculated their renormalization group
theory has the same infrared divergences as QCD. Takingelution from the hard scal@~m, to the intermediate
ratios of the form factors in Eq60), substituting the results SC2/€Q\.

in Eq. (33), and expanding inv(m,), our results for the We ponsiqlered two applications of the pollingar—soft
hard corrections to the soft form factors agree with those of1€0ry: inclusive and exclusive decays. In the inclusive case
Ref.[13]. we focused our attention on the radiative deBay Xy and

As an application, consider the zero in the forward-the semileptonic deca—X,l'v in the endpoint region of
backward asymmetry of the rare deddy-K*|*1~, which large photon energy and of low hadronic invariant mass, re-

gives a relation between the Wilson COE‘ffiCieng” and spectively. At leading order the OPE in the effective theory
clul 124,25 gives a bilocal operator whose matrix element is the univer-
7 ’

sal nonperturbative light-cone structure function of Bhme-
son. As is well known, in the ratio of large moments of these

Ra -2 07| by 210 _ two decays, this structure function cancels. As a consequence
= (7] Mg — Mix ) . . - . . -
Cy So | A1(So) the Sudakov logarithms in this ratio are entirely determined
by the running in the collinear-soft theory as discussed in
i Ta(So) (Mg + M) |, (61) Sec. V A. Our result is in agreement with previous literature
V(sp) [9,1Q].

For exclusive decays we investigated the relationship
wheres,~3 GeV is the value ofj> where the asymmetry amongst form factors in the large energy limit of QCD. In
vanishes. It was noted in Rgf25] that in the ratio of soft Ref.[12] it was shown using LEET that there are only three
form factors the effective theory form factors cancel. Ignor-independent soft form factors at leading order in an expan-
ing again the hard spectator contributions and the higher orsion in inverse powers of the energy of the light quark. How-
der effect of the mass of th€* we find ever, since LEET does not include collinear gluons it does
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not correctly reproduce the IR logarithms of QCD, and the - o

relevance of this result is not immediately obvious. We D e P () X e i PTAxgog (x)
showed that the presence of collinear gluons does not spoll P P Q

the relations among the soft form factors, therefore establish- -

ing these results in the large energy limit of QCD. Finally we =2 e P BoknprolX). (A3)
used the one-loop matching of the currents in the effective P Q

theory to relate the full theory form factors to the three in-
dependent matrix elements in the effective theory. Ou
analysis confirms the corresponding results in RE3)], but
with an infrared safe definition of the matching coefficients.

IJ\,lp to terms suppressed by powershothe x dependence of
én,p can be ignored and the Fourier components must agree,

Enp(X)— 2 Bo-péna(X). (A4)
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so the components transform as

APPENDIX A: COLLINEAR GAUGE 1
TRANSFORMATIONS Al AL+ 52 B+ [ Q“Bo—i10"Bol. (AB)
In this appendix we discuss the collinear gauge invariance ©
in the soft-collinear effective theory. For simplicity we will Using the transformation propertiés4) and(A6) for the
restrict ourselves to the Abelian case. From the general set gbllinear quark and gluon field, respectively, it is possible to
gauge transformationd (x) =e'*®, where see that the soft-collinear effective Lagrangian in 8d)) is

gauge invariant. To see this, it is sufficient to note that the
) following combination of collinear fields transforms in the
| same manner as the collinear quark field in ,
POO=UO0B00, (0= A, 00 SUT607,U(0). ] &)

(A1)

p

the collinear transformations belong to a subset where (A7)
d,a(x) scales like a collinear momentum. To make this scal—_l_h derivation i h di i displ
ing explicit we decompose an arbitrary collinear gauge trans: € en_vatlon Is somewhat tedious, so we wil not ISpiay
formation as the details. However, we note th_at to derive this result it is
necessary to make use of the unitarity of the gauge transfor-

mation,UT(x)U(x)=1 that implies

N ﬁl’v i~
S e x| gt 7in-a+gz e'q'XAﬁ,q>§n,p-
g

U(x)= J d*Q €2 *B(Q)=2 eQ%Bo(x7), (A2)

5 D BoBpe QP =1, (A8)
X
where fi-Q,Q, ,n-Q)~(A%\,\?) and the sum is ove® Finally, we show that the jet fielg, p from Sec. IlI,
=(n-Q,Q,). For notational convenience we will suppress = A
the dependence @8, onx~ henceforth. _S o iBxg o-ia 9N Ang AQ
In Sec. Il the full quark field was decomposed into com- Xn,P % X % n-q énpy (A9)

ponents¢, ,(x) that no longer depend on the large phases
e 'P~X. Under the collinear gauge transformation in &) is invariant under the collinear gauge transformation in Eq.
we have (A2). We have
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X b)m <)
S
A—=§—-}—-%)— =§=®_)— —)—%)- _)_-%_)-- >
" i
q

FIG. 7. One-gluon diagrams contributing to the soft renormal- FIG. 8. Collinear gluon renormalization of the current operator
ization of the current operatoy,I'h in an Abelian gauge theory. xnI'h with one external collinear gluon. The crossed dot denotes

D L b) I
SN SN

The crossed dot denotes one insertion of the opengibh, . one insertion of the operatg,I'h, .
gi-A momentumn- P, which enters as a label on the jet field
Ynp— 2, € PXexg > e faxZ_14 Xnp- This is a nontrivial consequence of collinear gauge
' P q n-q invariance and is essential for a consistent renormalization of

the collinear-soft effective theory. For example, in the col-
> linear diagram in Fig. &) the Wilson coefficient depends on
= Pr-pénRr- only the sum of the collinear gluon and quark momentum in
the loop. Thus, it depends only gmnand not on the loop
(A10) momentum.

In this appendix we illustrate this property of the current
by explicit calculation of the corresponding renormalization
- of the one collinear gluon term in the expansiongfsI'h,, .
—in-da(x)= > e‘iR'Xﬁ§+QﬁQ(—in_- Q). (A11) For simplicity we will work with an Abelian gauge theory

R.Q (QED), for which this expansion has been given explicitly in
Eq. (21) (with P=p+3;q; for each term

—ig-x

+2 g 2 MQBoBbiq
q Q

Comparing Eqs(Al) and(A5) and usingn-dB4=0 gives

Integrating this result with respect to x/2 and taking the
exponential gives the relation . g _
- n-Q B Xn,Prhuzgn,Prhu_ﬁ.qgn,Pn'An,qrhu
- n-R =
R.Q Q 9

(A12) +_n—qlﬁ q2 fn,pﬁ'An,qlﬁ'An,qzrhy"‘"-
Substituting Eq.(A12) into Eq. (A10) and shiftingp—R (B2
~P leaves The diagrams contributing to the renormalization of the
- n-A second term in this expansion are shown in Figs. 7 and 8. We
—iR-x —i -xgn n.gq ip-x : ; f
> e Rxexp > e d — > ePxp > will work throughout in the Feynman gauge. The diagrams
R q - p Q in Figs. 1a) and 8a) have been computed already; the ex-

10 x o _ ternal gluon momenturg does not enter the loop integral, so
xe Baénr=Xnp: (A13) they can be simply extracted from the corresponding results

where in the last step we have used the unitarity relation ifor €n,pI'h, [EQs.(35), (36)],
Eqg. (A8) and the definition in Eq(A9). Thus, the jet field is

: : - : ) g — _ a 2
invariant under a collinear gauge transformation as expected. Figs. 7(a)+8(a):< —= fn,pn'An,thu>4—S S+
-q T\ € €
2 u
+ —log=—+const. (B3)
APPENDIX B: RENORMALIZATION OF THE CURRENT € n-p

IN THE COLLINEAR-SOFT THEORY Furthermore, upon examining the Feynman rule for the two

In Sec. Il we quoted the renormalization constant of thecollinear gluon coupling in Fig. 1, one can see that the graph

current operatof, pI'h, in the collinear-soft theory in Fig. 8(c) vanishes in the Feynman gauge. We will show in
the following that the net effect of the two remaining graphs

o, aCe (1 2 M ) Figs. 7b) and 8b) is to changeén- p in the argument of the

2=y gl et eo9E e T o) (B1) logarithm in Eq.(B3) to n-(p+q), corresponding to the

total momentunP=p+q carried by the jet.
This was obtained by computing the renormalization of the  For simplicity we will take the external momenpaq to
term &, ,I'h,,, which is the first term obtained using the be off-shell and to have vanishing transverse components,
expansion ofy, p in Eq. (25). However, the renormalization p=(p,p-,0,) andq=(q,,q-,0,). With this choice the
constaniB1) depends only on the large component of the jetsoft diagram Fig. @) reduces to one term,
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. . del <€n,pn’An,thv>:U’2€
Fig. 7(b)“'93J (2m° [n1—pn-plin-1—(p+ a2 (pr Lo 17T

(B4)

The integration is performed most easily in light-cone coor- g® 1 (1 [n-(p+q)
dinatesl=(1*,17,1,), where thed " integral can be done by h=-g= ﬁ(; n “hp +COﬂS‘}, (B9)
the method of residues. We obtain
® 1 (1 [n-(p+q) | g as{Zl AL } (B10)
. — : = —=——1{—In|=——|+const.
Fig. 7(b)=(&, o An,qrhl,)%z n,qL n np n-q4m|e [n-(p+q)

Thus, the first term if; cancels the UV divergence in Eq.
i cons} _ (B5) _(BS), as required. The divergent termlip converts the label
in Eq. (B3) from n-p to n-(p+q). As mentioned, the re-
o maining UV divergence depends only on the total jet mo-
Since this graph does not give a contribution (&, , mentumP=p+q,
n-ApI'h,), it does not contribute to the renormalization of . _
the c&rrenéc. However, the resulting divergence seems to re- Figs. 4a)+7(b)+8(a)+8(b)+8(c)=

quire a new truly nonlocal operator. We will show that this g— _ s 2 M
contribution cancels in the sum of diagrams. —=—&npN Angl'hy )= =2+ -+ —log=5
. S ; n-q 47\e € € “n-P
The collinear graph in Fig.(®) can be written as
Fig. 8(b)=(&,pn-Anqlh) 1+ (&, o0 Ay oThy) 5, +00n39-
(86 (B1D)
where After adding the contributions from the heavy quark and
a — _ collinear quark field wave function renormalization, we re-
| —2ig3,2¢ d®l n-(p+hn-(p+q+l) B7) produce the renormalization constahtin Eq. (B1) (after
1= ) 2 R+ p) 2+ p+q)d?’ taking the color factoCr—1). With similar techniques we
have also checked that this holds for the renormalization of
3 o dd| Ii the term in Eq(B2) that contains two collinear gluon fields.
lo=—2ig"n f 2Zne mi+p 2+ prg? As argued in Sec. llI, collinear gauge invariance forces all

(B8) the terms in the sum in EqB2) to be renormalized in the
same way, with a Wilson coefficient that depends only on the
Once again the integration is simplified by using the methodotal jet momentum. The explicit calculations in this appen-

of residues on thé" integral. Explicitly, we find dix agree with this result.
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